Löslichkeitskonstanten und Freie Bildungsenthalpien von Metallsulfiden, 3. Mitt.:

*K_{ps0} von α-CdS (Greenockit)

Von

W. Kraft, H. Gamsjäger und E. Schwarz-Bergkampf

Aus dem Institut für Physikalische Chemie der Montanistischen Hochschule Leoben

Mit 2 Abbildungen

(Eingegangen am 17. Mai 1966)

Aus EMK-Messungen und thermischen Daten wird die Löslichkeitskonstante $*K_{ps0}$ der Reaktion:

$$ext{a-CdS} + 2~ ext{H}^+_{(J)} = ext{Cd}^{2+}_{(J)} + ext{H}_2 ext{S}_{(g)}$$

bei 25° C und der konstanten Ionenstärke $J\,M\,(\mathrm{Na})\mathrm{ClO}_4$ berechnet.

J:	0	1	3
\lg^*K_{ns0} :	$6,1\pm0,3$	-5,8+0,3	$-5,8 \pm 0,3$

From emf-measurements and thermal data the solubility constant ${}^{*}K_{ps0}$ is calculated for the reaction:

$$\alpha \text{-CdS} + 2 \operatorname{H}^{+}_{(J)} = \operatorname{Cd}^{2+}_{(J)} + \operatorname{H}_2 \operatorname{S}_{(g)}$$

at 25° C for the constant ionic strength J M(Na)ClO₄.

Einleitung

Die Gleichgewichtskonstante K_{ps0} der Reaktion

$$CdS_{(s)} + 2 H^{+} = Cd^{2+} + H_2S_{(g)}$$
 (1)

wurde bereits mehrfach bestimmt, doch zeigen die Ergebnisse verschiedener Autoren¹ Unterschiede von mehreren Zehnerpotenzen. Durch

¹ L. G. Sillén und A. E. Martell, Stability Constants of Metal-Ion-Complexes, Spezial Publ. No. 17, Chem. Soc., London 1964.

sehr sorgfältige Messungen der Lösungswärmen von α -CdS (Greenockit) und CdO_(s) konnten *Adami* und *King*² die Freie Bildungsenthalpie $\Delta G_{\alpha-\text{CdS}} = -34.8 \pm 0.4$ [kcal, 25° C] ermitteln.

Damit läßt sich $*K_{ps0}$ aus folgendem einfachen Kreisprozeß berechnen :

$$\alpha - CdS = Cd_{(s)} + S_{(s)}^2 \qquad \Delta G_2 = 34.8 \pm 0.4 \quad (2)$$

$$Cd(Hg)_{2phasig} + 2 H^+_{(J)} = Cd^{2+}_{(J)} + H_{2(g)}^{1,3} \quad \Delta G_3 = -0.04612 E_3^{\circ} (3)$$

$$\operatorname{Cd}_{(\mathrm{s})} = \operatorname{Cd}(\operatorname{Hg})_{2\mathrm{phasig}^4} \quad \Delta G_4 = -2,33 \tag{4}$$

$$H_{2(g)} + S_{(s)} = H_2 S_{(g)}^{5, 6} \qquad \Delta G_5 = -7,96 \pm 0.07$$
 (5)

$$\alpha - \text{CdS} + 2 \operatorname{H}^{+}_{(L)} = \text{Cd} \operatorname{}^{2+}_{(L)} + \operatorname{H}_2 \operatorname{S}_{(g)}$$
(1)

$$\Delta G_1 = \sum_{2}^{5} \Delta G = -1,364 \, \lg^* K_{ps0} = (24,51 \pm 0,4) - 0,04612 \, E_3^{\circ}$$

Dabei bezeichnet (J) den frei wählbaren Standardzustand; wird E° beispielsweise mit Bezug auf die unendlich verd. wäßr. Lösung als Standardzustand bestimmt, so bezieht sich auch die resultierende Löslichkeitskonstante auf diesen Standardzustand. Anderseits läßt sich $*K_{ps0}$ auch mit Bezug auf jedes Ionenmedium konstanter Ionenstärke (J) berechnen, sofern E° im selben Medium ermittelt wurde. Kürzlich haben nun Ste-Marie, Torma und Gübeli⁷ CdS im Bereich $0 < p_{\rm H} < 14$ bei konstanter Ionenstärke J = 1 M(Na)ClO₄ gefällt und radiochemische Messungen der Löslichkeit durchgeführt. Aus den Daten von⁷ folgt durch Kombination mit der entsprechenden Löslichkeitskonstante⁸ von H₂S (lg $K_{p12} = -1,05$):

$$\lg K_{ps0} = -4,3_3$$
 [1 *M* (Na)ClO₄, 25° C]

Um diesen Wert mit dem aus der Freien Bildungsenthalpie des α -CdS berechenbaren vergleichen zu können, wurden EMK-Messungen an folgenden Ketten durchgeführt:

$$--\operatorname{Cd}(\operatorname{Hg})_{2\operatorname{phasig}} + L_1 + \operatorname{SE} +$$
(A)

und

ź

$$-\operatorname{Pt}, \operatorname{H}_2 \qquad | L_2 | \operatorname{SE} -$$
 (B)

wobei SE folgende Halbzelle darstellt:

² L. H. Adami und E. G. King, Bur. Mines Rept. of Inv. 6495, (1964).

³ P. Schindler, Helv. chim. Acta 42, 2736 (1959).

⁴ W. G. Parks und V. K. La Mer, J. Amer. chem. Soc. 56, 90 (1934).

⁵ W. M. Latimer, Oxidation Potentials, 2nd Ed., New York 1961.

⁶ D. D. Wagman, Nat. Bur. Stand., Technical Note 270-1, Washington D. C. 1965.

⁷ J. Ste-Marie, A. E. Torma und A. O. Gübeli, Canad. J. Chem. 42, 662 (1964).

 $^{^{8}}$ H. Gamsjäger, W. Rainer und P. Schindler (wird demnächst veröffentlicht).

W. Kraft u.a.:

[Mh. Chem., Bd. 97

$$1 \ M \ \text{NaClO}_4 \left[\begin{array}{c} 0.99 \ M \ \text{NaClO}_4 \\ 0.01 \ M \ \text{NaCl} \end{array} \right] \ \text{AgCl, Ag } +$$

 L_1 und L_2 bezeichnen Lösungen folgender Zusammensetzungen:

Die EMK — in mV — beträgt bei 25° C für

$$E_A = E_{0A} - 29,58 \, \lg \, [\mathrm{Cd}^{2+}] + E_{jA} \tag{6}$$

und

$$E_B = E_{0B} - 59,16 \lg [\text{H}^+] + 29,58 \lg p_{\text{H}_2} + E_{jB}$$
(7)

oder

$$E_A = E_{0A} - C_A \tag{6a}$$

und

$$E_B = E_{0B} - C_B \tag{7a}$$

 $_{\rm mit}$

$$C_A = 29,58 \, \lg \, [\mathrm{Cd}^{2+}] - E_{jA}$$

bzw.

$$C_B = 59,16 ext{ lg [H^+]} - 29,58 ext{ lg } p_{ ext{H}_2} - E_{jB}$$

Da die Löslichkeit von der Kristallstruktur und bei gleicher Kristallstruktur von der Teilchengröße, bzw. von Gitterdefekten abhängt, wurden *Debye*—*Scherrer*-Aufnahmen von gefälltem CdS gemacht und mit einem Röntgendiagramm von CdS (Merck, ultrarein) verglichen.

Einzelheiten zur Versuchsmethodik

1. Potentialmessung

Apparatur und Titrationstechnik wurden bereits beschrieben⁹. Um die Bildung von Hydroxo-Komplexen^{10, 11} zu vermeiden, wurde L_1 sowie die zutitrierte NaClO₄-Lösung auf lg [H⁺] ~ — 4 eingestellt. Bei diesem p_H-Wert ist das Diffusionspotential noch zu vernachlässigen, da in 1 M (Na)ClO₄ übereinstimmend mit *Rossotti*¹² die Beziehung

$$E_{jB} = 63 \, [\mathrm{H}^+] \tag{8}$$

¹¹ G. W. Goward, Thesis, Princeton 1954; Univ. Microfilms 9414.

1136

⁹ H. Gamsjäger, W. Kraft und W. Rainer, Mh. Chem. 97, 833 (1966).

¹⁰ Y. Marcus, Acta Chem. Scand. 11, 690 (1957).

¹² F. J. C. Rossotti und H. S. Rossotti, Acta Chem. Scand. 10, 957 (1956).

gefunden wurde. E_{jA} wurde vernachlässigt; der Dampfdruck ($p_{\rm H_2O} = 22,9$ Torr) über 1 *M* (Na)ClO₄ wurde aus dem osmotischen Koeffiz. berechnet¹³ und berücksichtigt.

2. Reagentien

 $Cd(ClO_4)_2$: Zur Herstellung einer $Cd(ClO_4)_2$ -Stammlösung wurde CdS(Merck, ultrarein) in conc. HCl gelöst und mit 70 proz. HClO₄ bis fast zur Trockene eingedampft. In der so erhaltenen Lösung konnte weder Cl^- noch SO_4^{2-} nachgewiesen werden. Der Cd^{2+} -Gehalt wurde elektrogravimetrisch, die Wasserstoffionenkonzentration potentiometrisch nach *Gran*¹⁴ ermittelt. Aus der Stöchiometrie folgt:

$$[ClO_4^-] = 2 [Cd^{2+}] + [H^+].$$

Cadmiumamalgam: Aus einer Cd²⁺-Lösung wurde Cd an einer Hg-Elektrode abgeschieden, bis der Cd-Gehalt 12 Gew.% betrug. Das Amalgam wurde verflüssigt und mit verd. HClO₄ gewaschen.

Ca. 1 g Cd(Hg)_{2phasig} wurde auf einem Pt-Draht erstarren gelassen und im Wasserstoffstrom in das Titrationsgefäß eingebracht.

Alle übrigen Reagentien wurden wie bisher⁹ hergestellt und analysiert, bzw. waren von p. a. Qualität.

Alle volumetrischen Bestimmungen wurden mit geeichten Meßgeräten bei 25.0 ± 0.5 °C in einem Thermostatenraum durchgeführt. Die einzelnen Analysen stimmten in der Regel innerhalb 0.1% überein.

3. Röntgenographische Untersuchung von gefälltem CdS

3 CdS-Präparate wurden hergestellt durch Einleiten von H_2S (Matheson, 99,8proz.) in sauerstofffreie Lösungen (25° C) folgender Zusammensetzung:

b) $0,01 \ M \ CdSO_4$	c) 0,01 $M \operatorname{CdSO}_4$	d) $0.01 M \operatorname{CdSO}_4$
0,04~M NaCl	$0,04 \; M \; { m NaCl}$	$0,04 \; M \; { m NaCl}$
$0,86 \ M \ NaClO_4$	$0,86 \ M \ \mathrm{NaClO_4}$	$0,84 \ M \ NaClO_4$
$0,08 \; M \; \mathrm{HClO}_4$		0,02~M NaOH

Nach der Fällung wurden die Lösungen c und d mit HClO₄ auf [H⁺] = 0,1 M eingestellt. Die Gesamtionenstärke war dann J = 1 M (Na)ClO₄. Die Präparate wurden filtriert und im Vakuumexsikkator getrocknet. Der p_H-Wert zu Beginn der Fällung beeinflußte die Farbe der Produkte (Präp. b war hellgelb, Präp. c dunkelgelb, Präp. d orangerot). Ein CdS (Merck, ultrarein) diente zum Vergleich (Präp. a).

Die *Debye*—Scherrer-Diagramme wurden in einer Zylinderfilmkammer der Fa. Siemens mit Cr_{K_Z} -Strahlung aufgenommen.

Ergebnisse

Typische Versuchsreihen der Potentialmessungen sind in Tab. 1 und 2 wiedergegeben.

1137

¹³ J. H. Jones, J. Physic. Chem. 51, 516 (1947).

¹⁴ G. Gran, Acta Chem. Scand. 4, 559 (1950).

Ε	c_A	$E_{\mathfrak{o}A}$	E	c_A	$E_{{}^{0}A}$
753,2	42,11	711,1	785,3	74,04	711,3
758,8	47,40	711,4	791,1	79,84	711,3
764,7	53,18	711,5	794,2	82,84	711,4
770,7	59,20	711,5	800,0	88,78	711,2
776,5	65,04	711,5	802,7	91,50	711,2
782 3	71.01	711.3	805.9	94.71	711.2

Tabelle 1. Bestimmung von E_{0A} in mV bei 25° C

Tabelle 2. Destrimmung von E0g in mv ber 20 0					
E	C_B	$E_{^{0}B}$	E	C_B	E_{0B}
415,1	64,34	350,8	470,8	120,07	350,7
423,0	72,02	351,0	487,8	137,10	350,7
432,6	81,83	350,8	495,5	145, 12	350,4
443,2	92,70	350,5	506,7	155,91	350,8
451,2	100,57	350,6	513, 5	162,60	350,9
462,9	112,32	350,6	533,1	182,13	351,0

Wir erhielten im Mittel aus je 40 Versuchen

$$E_{0A} = 711.4 \pm 0.3 \text{ mV}^{1}$$

und

$$E_{0B} = 350.7 + 0.3 \,\mathrm{mV^{1}};$$

daraus folgt das Standardpotential von $Cd(Hg)_{2phas.}/Cd^{2+}$

$${E_3}^\circ = 360.7 \pm 0.5 ~\mathrm{mV} \left[J = 1 ~M
m{(Na)ClO_4}, 25^\circ
m{C}
m{]}$$

Ebenso erhielten wir das Standardpotential von Cd(Hg)_{2phas.}/Cd²⁺ in 3 M (Na)ClO₄. Der gefundene Wert

$$E_3^\circ = 360.6 \pm 0.5 \ {
m mV} \ [J = 3 \ M \ ({
m Na}){
m ClO}_4, \, 25^\circ \, {
m C}]$$

steht in guter Übereinstimmung mit dem von Schindler³ ermittelten. E_3° bei J = 0 ist bekannt¹. Die Löslichkeitskonstante des α -CdS beträgt somit bei 25° C:

Diskussion

1. Röntgendiagramme

Das von uns berechnete $*K_{ps0}$ liegt 1,5 Einheiten im Logarithmus niedriger als das kürzlich aus Löslichkeitsmessungen⁷ gefundene. Wir

¹⁾ Die angegebenen Fehlergrenzen entsprechen den Maximalabweichungen.

H. 4/1966] Löslichkeitskonstanten von Metallsulfiden

versuchten nun mit *Debye*—*Scherrer*-Aufnahmen (Abb. 1) der Präparate *a* bis *d* diesen Unterschied zu erklären. Präp. *a* zeigt nur die Linien der kubischen (β -CdS, Hawleyit) und der bei Raumtemperatur stabilen¹⁵ hexagonalen Phase (α -CdS, Greenockit). Die scharf ausgebildeten Reflexe zeigen, daß beide Modifikationen in gut kristallisiertem Zustand vorlagen.

Abb. 1. Röntgendiagramme von CdS: Präp. a, Merck ultrarein, Präp. b gefällt (sauer), Präp. c gefällt (neutral), Präp. d gefällt (basisch).

Bei den Präparaten b bis d sind ebenfalls nur Linien von β -CdS und α -CdS vorhanden, aber die Reflexe werden zunehmend unschärfer (Teilchengröße, Gitterdefekte). Die Löslichkeit wird durch den instabilsten Anteil des Bodenkörpers bestimmt. Frisch gefälltes CdS hat, wie Abb. 1

Tabelle 4. Weitere Löslichkeitskonstanten von α-CdS

K _{CdS}	lg K [25°C, $J = 1 M(Na)ClO_4$]	lg K [25°C, $J = 0$]
$\begin{array}{c} [Cd^{2+}] [HS^{-}]^2 \cdot p_{H_2S}{}^{-1} \\ [Cd^{2+}] [S^{2-}] \end{array}$	$-21.7 \pm 0.3 \\ -27.7 \pm 0.5$	$-22,1\pm0,3\-29,0\pm0,5$

(b-d) zeigt, keine röntgenographisch einheitliche Zusammensetzung. Eine auf einer Fällungstechnik beruhende Löslichkeitsbestimmung von CdS ist nur dann mit unserem Ergebnis vergleichbar, wenn das Gleichgewicht durch α -CdS (s. Gl. 2) bestimmt wird.

E. S. Rittner und J. H. Schulman, J. Physic. Chem. 47, 537 (1943).
 Monatshefte f
 ür Chemie, Bd. 97/4
 73
 73

2. Weitere Löslichkeitskonstanten von α-CdS

Mit den Löslichkeits- und Säurekonstanten des H₂S bei J = 0 bzw. $J = 1 \ M$ können weitere Löslichkeitskonstanten von CdS berechnet werden. K_{p12} , K_{12} und K_1 bei J = 0 wurden wie früher⁹ ausgewählt.

Abb. 2. Prädominanzdiagramm des Systems $\operatorname{Cd}_{(\operatorname{aq})}^{2+} - \operatorname{H}_2S_{(g)} - \operatorname{CO}_{2(g)} - \operatorname{H}_2O_{(l)} \quad [J = 0, 25^{\circ}C]$ $[\operatorname{Cd}^{2+}] = 1 M, \ p_{CO_2} = 1 \text{ Atm.}$

 K_{12} und K_1 bei $J = 1 \ M$ wurden der neuesten Literatur entnommen (lg $K_{12} = -6.90 \pm 0.05$, lg $K_1 = -14.0 \pm 0.3$)^{7, 16}. Der K_1 -Wert von Widmer und Schwarzenbach wurde von uns nach einer kleinen Temperaturkorrektur als der wahrscheinlichste angesehen. Dem geänderten Ionenmedium¹⁶ wurde durch eine Erhöhung der Fehlergrenzen Rechnung getragen.

¹⁶ M. Widmer und G. Schwarzenbach, Helv. chim. Acta 47, 266 (1964).

3. Prädominanzdiagramm des Systems Cd²⁺_(aq)-H₂S_(g)-CO_{2(g)}-H₂O₍₁₎

Aus den Löslichkeitskonstanten ${}^{*}K_{ps0}$ von α -CdS und CdCO_{3(s)} 17 (25° C, J = 0) kann das Prädominanzdiagr. des Systems Cd²⁺_(aq)— —H₂S_(g)—CO_{2(g)}—H₂O₍₁₎ konstruiert werden. In Abb. 2 wurde lg p_{H_2S} . · $p_{CO_2}{}^{-1}$ ($p_{CO_2} = 1$ Atm) gegen p_H aufgetragen. Bei [Cd²⁺] = 1 Msind sowohl die Thio-, als auch die Hydroxokomplexe zu vernachlässigen. Die Geraden in Abb. 2 wurden folgendermaßen berechnet:

a) Koexistenz $Cd^{2+}(aq) - \alpha - CdS$ (s. Gl. 1). Aus

b) Koexistenz $Cd_{(aq)}^{2+}$ -CdCO_{3(s)}. Aus

$$CdCO_{3(s)} + 2 H^{+} = Cd^{2+} + CO_{2(g)} + H_2O_{(1)}$$
(9)

mit lg $K_{ps0} = \log [Cd^{2+}] \cdot p_{CO_2} [H^+]^{-2} = 6.14$ folgt

$$p_{\rm H} = 3.07 - \frac{1}{2} \lg p_{\rm CO_2} - \frac{1}{2} \lg [{\rm Cd}^{2+}]$$
 II

c) Koexistenz α -CdS--CdCO_{3(s)}. Aus

$$\alpha - \text{CdS} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(1)} = \text{CdCO}_{3(g)} + \text{H}_2\text{S}_{(g)}$$
(10)

folgt mit I und II

$$\lg \frac{p_{\rm H2S}}{p_{\rm CO_2}} = -12,24 \tag{III}$$

Die strichlierte Gerade gilt für gefälltes CdS⁷ und entspricht einer höheren Löslichkeit.

Natürlicher Greenockit ist gegen Verwitterung, insbesondere Carbonatisierung, sehr beständig. Tatsächlich muß das Verhältnis $p_{\rm H_2S}$ zu $p_{\rm CO_2}$ extrem klein sein (s. Gerade III), um diese Umwandlung zu ermöglichen. Ebenso zeigt Abb. 2, daß eine CdCO₃-Aufschlämmung sehr geeignet ist, Gase von H₂S-Spuren zu befreien.

Wir danken Herrn Prof. Dr. P. Schindler (Bern) für wertvolle Anregungen und Herrn Dr. G. Faninger (Leoben) für die Hilfe bei der Aufnahme und Auswertung der Röntgendiagramme.

¹⁷ H. Gamsjäger, H. U. Stuber und P. Schindler, Helv. chim. Acta 48, 723 (1965).